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Development, experimental implementation, and the results of reduced-order model
based feedback control of subsonic shallow cavity flows are presented and discussed.
Particle image velocimetry (PIV) data and the proper orthogonal decomposition
(POD) technique are used to extract the most energetic flow features or POD
eigenmodes. The Galerkin projection of the Navier–Stokes equations onto these
modes is used to derive a set of nonlinear ordinary differential equations, which
govern the time evolution of the eigenmodes, for the controller design. Stochastic
estimation is used to correlate surface pressure data with flow-field data and dynamic
surface pressure measurements are used to estimate the state of the flow. Five sets
of PIV snapshots of a Mach 0.3 cavity flow with a Reynolds number of 105 based
on the cavity depth are used to derive five different reduced-order models for the
controller design. One model uses only the snapshots from the baseline (unforced)
flow while the other four models each use snapshots from the baseline flow combined
with snapshots from an open-loop sinusoidal forcing case. Linear-quadratic optimal
controllers based on these models are designed to reduce cavity flow resonance
and are evaluated experimentally. The results obtained with feedback control show
a significant attenuation of the resonant tone and a redistribution of the energy
into other modes with smaller energy levels in both the flow and surface pressure
spectra. This constitutes a significant improvement in comparison with the results
obtained using open-loop forcing. These results affirm that reduced-order model
based feedback control represents a formidable alternative to open-loop strategies in
cavity flow control problems even in its current state of infancy.

1. Introduction
The goals of the flow control are extensive as exhibited by its multitude of

applications (e.g. lift increase, drag reduction, mixing enhancement, laminar-to-
turbulent transition delay, separation control, noise suppression). Flow control can
be divided into two general categories of passive or active control. In passive control,
which is straightforward to implement and has widespread applications, control is
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accomplished by geometrical modifications to the flow system. In active control,
external energy (mass and/or momentum, heat) is added to the flow. Active control is
divided into open-loop and closed-loop. In open-loop control, actuation takes place
based on an operator’s command or a predetermined input. In the closed-loop or
feedback control case, which is the subject of the current work, information from one
or more sensors in the flow along with a flow model guides the actuation process. Based
on the frequency content of actuation relative to instability frequencies of the flow,
active control can be further divided into two categories. The first category involves
steady or low-frequency (frequencies much lower than any flow instability frequencies)
energy addition. The second category employs actuators with large bandwidths that
include at least one flow instability frequency.

Successful applications of feedback control are widespread in areas such as robotics,
aerospace, telecommunication, transportation systems manufacturing systems and
chemical processes. Only in recent years has feedback control of aerodynamic flows
received focused attention (Cattafesta et al. 1997, 2003; Gad-el-Hak 2000; Williams,
Fabris & Morrow 2000; Kegerise, Cattafesta & Ha 2002; Rowley & Williams 2003;
Samimy et al. 2003; Siegel et al. 2003; Gerhard et al. 2003; Glauser et al. 2004; Tadmor
et al. 2004). Open-loop flow control, which can be useful in many applications, lacks
the responsiveness and flexibility needed for application in dynamic flight environ-
ments. In contrast, closed-loop flow control is well-suited to the successful manage-
ment of these flows since it allows adaptability to variable conditions. In addition,
closed-loop control shows the potential to significantly reduce power requirements
in comparison to open-loop control strategies (Cattafesta et al. 1997). Unfortunately,
the tools of classical control system theory are not directly applicable to aerodynamic
flows since such systems display spatial continuity and nonlinear behaviour while
also posing formidable modelling challenges owing to their infinite dimensionality,
a complexity introduced by the Navier–Stokes equations. In order to design and
successfully implement a closed-loop control strategy, it is necessary to obtain a
reduced-order dynamical model of the flow, which can capture the important dynamics
of the flow and actuation while remaining sufficiently simple to allow its use in model-
based feedback control design.

The flow over a shallow cavity – a configuration relevant to many practical
applications that has been extensively studied – was selected for the present study.
This flow is characterized by a strong coupling between the flow dynamics and
the flow-generated acoustic field that can produce self-sustained resonance known
to cause, among other problems, store damage and airframe structural fatigue in
weapons bays. A comprehensive review of this phenomenon and of various control
and actuation strategies developed for its suppression is given in Cattafesta et al.
(2003) and Rowley & Williams (2006).

Rossiter (1964) first developed an empirical formula, which was later modified
and improved by Heller & Bliss (1975), for predicting the frequencies of cavity
flow resonance, today referred to as Rossiter frequencies or modes. Rossiter also
investigated the concept of a dominant mode of oscillation that was later observed
by others to coincide with the natural longitudinal cavity acoustic mode (Rockwell
& Naudascher 1978). In such a condition, a strong single-mode resonance occurs
(Williams et al. 2000); otherwise multiple modes exist in the flow. A similar interaction
can also occur between Rossiter modes and the natural transversal cavity acoustic
modes (e.g. Ziada, Ng & Blake 2003; Debiasi & Samimy 2004). Recent theoretical
models of cavity acoustic resonance based on edge scattering processes explain these
behaviours (Kerschen & Tumin 2003; Alvarez, Kerschen & Tumin 2004; Alvarez &
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Kerschen 2005). Rapid switching between modes has been observed in multi-mode
conditions (Cattafesta et al. 1998; Williams et al. 2000; Debiasi et al. 2004). The rapid
and seemingly random switching between multiple modes places large bandwidth and
fast time response requirements on both the actuation scheme and feedback control
algorithm.

Extensive work has been carried out to control the flow over a cavity. Passive
techniques include rigid fixed fences, spoilers, ramps (Heller & Bliss 1975; Sarno &
Franke 1994; Ukeiley et al. 2002) and cylinders or rods placed in the boundary layer
near the leading edge of the cavity (McGrath & Shaw 1996; Stanek et al. 2003).
These devices are simple, inexpensive and reliable, but may not work well at off-
design conditions since they have little or no capability for adjustment to changing
flow conditions. Different open-loop control strategies have been used with varying
degrees of success (e.g. Shaw 1998; Stanek et al. 2003; Grove, Leugers & Akroyd
2003; Debiasi & Samimy 2004). There have also been significant efforts to investigate
closed-loop control approaches (Cattafesta et al. 1997, 1999; Shaw & Northcraft
1999; Williams et al. 2000, 2002; Kegerise et al. 2002; Rowley et al. 2002; Cabell et al.
2002; Caraballo et al. 2005, 2006). The results of these closed-loop endeavours are
encouraging, but also indicate that many issues remain to be resolved and numerous
opportunities exist for further advancement of the technology.

Although we have examined other control approaches in recent years (Debiasi et al.
2004; Efe et al. 2005; Yan et al. 2006), our primary objective from the onset has
been the development of control techniques based on reduced-order models of
the cavity flow (Samimy et al. 2004; Yuan et al. 2005; Caraballo et al. 2005, 2006). The
approach we have followed in the development of such a model is based on the
proper orthogonal decomposition (POD) method. This technique relies on the energy-
containing eddies in the flow that can be extracted using the spatial correlation tensor
of the velocity field in the form of spatial eigenmodes called POD modes. These
structures are the most dominant features in the flow and arguably are the only
entities that can effectively be controlled. The dynamics of the flow are obtained
when these modes are modulated by modal coefficients obtained by projecting the
governing Navier–Stokes equations onto the POD basis. This results in a set of
nonlinear ordinary differential equations, which we use for controller design. The
equations are autonomous and not useful for controller design purposes since the
controller input is not explicit. Consequently, they must be recast in a form expressing
the control input explicitly so that a feedback controller can be designed using the
tools of control theory (Efe & Özbay 2003; Caraballo et al. 2005).

In § 2, we introduce the flow facility used in this work. In § 3, we present the POD
and Galerkin methods adopted for deriving the reduced-order model, and the
stochastic estimation approach used for real-time estimation of the flow model varia-
bles directly from dynamic surface pressure measurements. This is followed in § 4 by
a discussion of the flow characteristics and of the reduced-order model results and
in § 5 by the design and implementation of the linear-quadratic controller. We will
present and discuss the experimental results in § 6, followed by concluding remarks
in § 7.

2. Experimental facility and techniques
The experimental facility is a small-scale blow-down wind tunnel located at the

Gas Dynamics and Turbulence Laboratory of The Ohio State University. The tunnel
can be operated continuously using filtered and dried air, which is supplied by
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Figure 1. Scaled drawing of the experimental set-up showing the test section with the cavity
and the actuator.

two four-stage compressors and stored in two large tanks of 1600 m3 volume at
approximately 16 MPa. The air is conditioned in the settling chamber and passed
through various screens designed to minimize free-stream turbulence. Flow is directed
to the 50.8 mm (2 in) by 50.8 mm (2 in) test section (figure 1) through a smoothly
contoured converging nozzle and exhausts to the atmosphere through a large pipe.
The facility operates in the Mach number range 0.2 to about 0.7. A 50.8 mm (2 in)
long variable depth cavity is recessed in the floor of the wind tunnel. This cavity spans
the entire width of the test section. The focus of this work is on a shallow cavity with
a depth of 12.7 mm (0.5 in) corresponding to a cavity aspect ratio, L/D, of 4. For
Mach 0.3 flow, the Reynolds number based on this cavity depth is about 105. Optical
quality windows surround the test section and allow laser-based flow diagnostics from
15 mm upstream to 25 mm downstream of the cavity. Additional details of the facility
and the experimental techniques used can be found in Debiasi & Samimy (2004) and
Little, Debiasi & Samimy (2006).

The control flow is produced by mechanical oscillation of the titanium diaphragm of
a Selenium D3300Ti compression driver. The flow is channelled to the cavity leading
edge where it exits at an angle of 30◦ with respect to the main flow through a two-
dimensional slot of 1 mm height spanning the cavity width (figure 1). This arrangement
provides zero net mass, non-zero net momentum flow for actuation, similar to that
of a synthetic jet. Effective actuation can be achieved in the frequency range of
1–5 kHz, which is a clear advantage of this actuator over a traditional synthetic
jet. Primarily owing to the geometry of the actuator plenum, the jet velocity output
has significant frequency modulation with several peaks and valleys in the range
of 1–10 kHz. Conversely, at all frequencies the amplitude response is approximately
a linear function of the input voltage level (Debiasi & Samimy 2004). Based on
our previous observations, the modulated frequency response of the actuator has a
minor impact on the results with sinusoidal forcing since the actuator exhibits good
authority and produces conspicuous effects even at frequencies where its maximum
output velocity is quite small (5 m s−1 in comparison with a peak of about 25 m s−1).
However, the actuator transfer function can produce a selective amplification at some
output frequencies when broadband control signals are supplied. This undesirable
characteristic is being addressed by a compensator currently under development (Kim
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et al. 2007). In the current work, the actuator input voltage is produced by either a
BK Precision 3011A function generator for open-loop forcing or by a dSPACE 1103
digital signal processor (DSP) control board in closed-loop studies and is amplified by
a Crown D-150A amplifier in either case. The momentum coefficient of the actuator,
Cµ = hu2

rms/HU 2
∞, is in the range of 10−4 to 10−6, where urms is the root-mean-square

forcing flow velocity at the actuator exit slot, U∞ is the velocity of the free stream
in the test section above the cavity, and h and H are the actuator exit slot and
wind-tunnel test-section height, respectively.

The instantaneous features of the flow in a streamwise plane at the test-section
centreline are visualized using laser-sheet diagnostics. Scattering of incident radiation
is accomplished by locally seeded smoke particles introduced through a narrow (3 mm)
streamwise slot on the cavity floor. The laser sheet enters the test section from an
optical window on the top wall of the tunnel and exits through the slot on the cavity
floor. The laser is a Continuum Powerlite 8010 Nd:YAG pulsed laser operating at the
second harmonic (532 nm) with 9 ns pulse duration at 10 Hz. A Princeton Instruments
intensified CCD camera is used to obtain flow images. The laser and camera are
phase-locked to the resonant or actuation frequency using a reference signal provided
by a timing card (National Instruments PC-T10-10) to obtain phase-averaged data.

Planar snapshots of the velocity field, required for the development of the reduced-
order model, are acquired using a two-component LaVision particle image velocimetry
(PIV) system. The flow is uniformly seeded upstream of the stagnation chamber with
di-ethyl-hexyl-sebacat particles using a four-jet atomizer. A dual-head Spectra Physics
PIV-400 Nd:YAG laser operating at the second harmonic (532 nm) at approximately
100 mJ per pulse is used in conjunction with sheet-forming optics to form a thin
(∼1 mm) sheet on the (x, y)-plane passing through the centreline of the cavity. The
narrow slot cut into the cavity floor minimizes beam reflections by allowing the laser
sheet to exhaust and diffuse in a sealed light trap. Two images separated by 1.8 µs
corresponding to the pulses from each laser head are acquired by a 2000 × 2000 pixel
Redlake CCD camera with a 90 mm macro lens and a narrow band-pass optical
filter. The camera views the streamwise laser sheet orthogonally over the entire test-
section length as in the flow-visualization case. A computer with dual Intel Xeon
processors is used for data acquisition. The acquired images are divided into 32 × 32
pixel interrogation windows which contain of the order of 6–10 particles each. For
each image, subregions are cross-correlated using multi-pass processing with 50 %
overlap. The resulting vector fields are post-processed to remove any remaining
spurious vectors. This arrangement gives a velocity vector grid of 128 × 128 over the
approximate measurement domain of 50.8 mm (2 in) × 50.8 mm (2 in), which trans-
lates to velocity vectors separated by about 0.4 mm. A comparison between ensemble
average streamwise velocity profiles measured with the PIV system and Pitot probe
for Mach 0.3 flow (not shown) confirms that the two measurements agree within
1 % in the free stream. Phase-locked PIV is accomplished by synchronizing the
image-acquisition process to a timing card signal as in the flow-visualization case.

Flush-mounted Kulite transducers are placed at various locations on the surfaces
of the test section for dynamic pressure measurements. Figure 2 shows the locations
of the six transducers on the cavity sidewall used in this study. Transducers 7–9 in the
cavity floor are shown as well, which were also used for measurements not requiring
the use of the slotted cavity floor. The transducers have a flat frequency response up
to about 50 kHz, and are powered by a signal conditioner that amplifies and low-pass
filters the signals below 10 kHz. Additional high-pass filtering removes low-frequency
noise below 100 Hz. For spectral analysis, 262 144 samples are acquired at 200 kHz
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Figure 2. Position of the Kulite pressure transducers 1–6 (on the sidewall) and of
transducers 7–9 in the cavity floor.

rate through a 16-bit acquisition board (National Instruments PCI-6143 S-Series)
operating on a Dell Precision Workstation 650 computer. By using the transducer
sensitivity and accounting for the amplifier gain setting, the voltage values of the time
traces are converted to non-dimensional pressure referenced to the commonly used
value of 20 µPa. Short-time Fourier transform (STFT) is used to obtain information
on the time evolution of the sound pressure levels (SPL) (Hammond & White 1996;
Qian & Chen 1996; Little et al. 2006), and SPL spectra are obtained by averaging
the corresponding spectrograms.

For state estimation, dynamic pressure measurements are acquired simultaneously
with the PIV measurements. In the current study, 1000 PIV snapshots were recorded
for each flow/actuation condition explored. The PIV snapshots are time-uncorrelated
since they are sampled at a rate of 5 Hz which is dictated by the 10 Hz laser, CCD
camera, and data acquisition system. For each PIV snapshot, 128 samples from each
of the transducers 1–6 in figure 2 are acquired at 50 kHz rate. A programmable
timing unit (PTU) housed in the PIV computer, triggers the acquisition of pressure
data corresponding to each PIV snapshot. The temporal location of the laser pulse
with respect to the pressure traces is resolved by acquiring the laser Q-switch TTL
simultaneously with the pressure signals. The experiment is designed in such a
way that the Q-switch TTL falls near the middle of a pressure data sequence. This
simultaneous sampling of the laser Q-switch signal and the pressure signals allows, for
each snapshot, the identification of the section of pressure time traces corresponding
to the instantaneous velocity field. The Q-switch TTL corresponding to only one laser
pulse is sufficient due to the small accurate time separation between laser pulses.

To quantitatively characterize the frequency content of cavity shear layer for
baseline and controlled cases, hot-wire measurements are employed at three
streamwise locations, x/D =1, 2 and 3. Velocity time traces are acquired using a TSI
1276-10A subminiature hot-film probe connected to a TSI 1750 constant-temperature
anemometer. The 25 µm thick and 0.25 mm long sensor has a flat frequency response
up to about 40 kHz and can accurately resolve frequencies up to 10 kHz. Similar to
the pressure case, 262 144 samples of the signal from the anemometer are acquired
at 200 kHz. For each streamwise location, the optimal vertical position for clearest
description of the structure frequency content was determined by analysing vertically
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traversed velocity spectra. For the Mach 0.3 flow, the optimal vertical positions are
respectively 4, 6 and 8 mm above the cavity leading edge, a result consistent with
observations of Hussain & Zaman (1985) for a plane mixing layer.

For closed-loop control of the flow, the dSPACE 1103 DSP board is used. This
system uses four independent, 16-bit A/D converters each with 4 multiplexed input
channels that allow simultaneous acquisition and control processing of 4 signals. It
also allows, almost simultaneous, because of multiplexing, acquisition and processing
of additional signals at a rate up to 50 kHz per channel to produce at the same
rate a control signal from a 14-bit output channel. As before, the pressure signals
are band-pass filtered between 100 Hz and 10 kHz to remove unwanted frequency
components.

3. Reduced-order modelling procedure
Development of tools and procedures for feedback control based on reduced-

order models has been our primary goal from the onset of this research programme
(Caraballo et al. 2004; Samimy et al. 2004; Yuan et al. 2005). Our recent work
has focused on deriving the reduced-order models of the cavity flow from PIV and
surface pressure measurements (Caraballo et al. 2005, 2006). The overall technique
combines three separate methods and procedures to obtain a reduced-order model
for the design and implementation of a controller. First, the proper orthogonal
decomposition method is used to obtain spatial eigenmodes or POD modes of the
flow. Secondly, the Navier–Stokes equations tailored for the current flow are projected
onto the POD modes using the Galerkin projection method to obtain the flow model,
which consists of a set of nonlinear ordinary differential equations. These equations
govern the time evolution of the POD modes. In the third and final step, stochastic
estimation is used to correlate the flow velocity field to surface pressure data and to
provide real-time updates of the state of the model derived in the previous step. Each
of these three steps is discussed briefly in this section while additional essential steps
in the derivation processes are given in the Appendix.

3.1. Proper orthogonal decomposition technique

The POD method was introduced to the fluid dynamics community by Lumley
(1967) as an objective tool to extract information on the nature of energy-containing
large-scale structures in a turbulent flow. Implementation of the POD technique
requires detailed temporal or spatial correlation data in the flow, which nowadays
can readily be obtained using either numerical simulations or laser-based planar flow
measurements. The original derivation, however, favoured time-resolved data over
long durations at a few spatial locations (hot-wire type data, e.g. Glauser et al. 1999;
Citriniti & George 2000). More details of the method can be found in Berkooz, Holmes
& Lumley (1993), Holmes, Lumley & Berkooz (1996), and Delville, Cordier & Bonnet
(1998). Two decades after its introduction, Sirovich (1987) extended the POD approach
and developed the snapshot method, which favours spatially resolved, but time-
uncorrelated snapshots of the flow field. Such data can be obtained using numerical
simulations or advanced optical diagnostics such as particle image velocimetry or
planar Doppler velocimetry. We are currently using PIV data with the snapshot
method. A brief summary of this technique follows while details of the snapshot
method and its application in the present context are given in the Appendix.

The POD method uses M snapshots of the flow and casts the fluctuations in the
flow in terms of N <M spatial orthonormal modes or POD modes, ϕi(x), and modal
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coefficients for these modes, ai(t). The POD expansion (3.1) represents fluctuations
of the vector q(x, t) = [u(x, t), v(x, t), c(x, t)] in terms of the modes that contain the
major portion of the kinetic energy in the flow.

q ′(x, t) ∼=
N∑

i=1

ai(t)ϕi(x). (3.1)

For each of the flow cases explored in this work, 1000 PIV snapshots of the flow field
are acquired (Little, Debiasi & Samimy 2006). Each snapshot contains two compon-
ents u and v of instantaneous velocity on the (x, y)-plane passing through the centre of
the cavity and the corresponding value for the speed of sound c is calculated based on
the flow stagnation temperature. The results indicate that the mean turbulence kinetic
energy converges after approximately 700 snapshots (Caraballo et al. 2006). To ensure
convergence, all 1000 snapshots for each data set were used to obtain the POD modes.

The PIV images are used to derive five different reduced-order models for the
design and implementation of feedback control in the experiments. One model uses
1000 snapshots from the baseline (unforced) Mach 0.3 flow and each of the other four
models uses 1000 snapshots from the baseline flow combined with 1000 snapshots
from various open-loop forced Mach 0.3 flows exhibiting very different characteristics.
The motivation for these combinations is to make the model as rich as possible within
the constraint of using only a few modes (four in the current case) for its construction.

3.2. Galerkin projection

The second step in the process of deriving a reduced-order model is the projection
of the Navier–Stokes equations governing the flow onto the POD modes, ϕi(x),
using the Galerkin projection method. Starting from the compressible Navier–Stokes
equations derived in Rowley (2002), this procedure produces a set of nonlinear
ordinary differential equations for the modal coefficients a(t) = [a1(t)a2(t) . . . aN (t)] in
(3.1). More details on the projection procedure are given in the Appendix.

Each flow variable is initially decomposed, using Reynolds decomposition, into
its mean and fluctuating components. Then, the POD expansion (3.1) is written
for each of the fluctuating components. Finally, the flow variables in the Navier–
Stokes equations are replaced by the expanded expressions of mean and fluctuating
components. The new form of the governing equations is then projected onto the POD
modes by taking the inner product of each term with the POD modes according to
the vector norm introduced in Rowley (2002). The resulting set of ordinary differential
equations for the modal coefficients in (3.1), termed the Galerkin model (GM), has
the form

ȧ(t) = F + G a(t) +

⎡
⎢⎣

aT (t)H1a(t)
...

aT (t)HN a(t)

⎤
⎥⎦ , (3.2)

where F, G and Hi , i =1, . . . , N , are constant coefficient matrices obtained from the
Galerkin projection. The number of modes used in the POD description of the flow,
N , defines the number of equations.

The GM (3.2) is autonomous (i.e. the control input is implicit in the equations
and is not clearly identified) and not useful for controller design. A few different
methods are currently being explored to derive a model where the control input
appears explicitly in the equations. The method used in the present work is based on
spatial subdomain separation, which yields a new GM expressed by the following set
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of ordinary differential equations

ȧ(t) = F + Ga(t) +

⎡
⎢⎣

aT (t)H1a(t)
...

aT (t)HN a(t)

⎤
⎥⎦ + BΓ (t) +

⎡
⎢⎣

(B̄
1
Γ (t))T a(t)

...

(B̄
N
Γ (t))T a(t)

⎤
⎥⎦, (3.3)

where the matrices of constant coefficients F, G, Hi , B and B̄
i
, i = 1, . . . , N , are

obtained from the Galerkin projection, and Γ (t) is the control input applied at the
forcing location. The GM (3.3) represents a reduced-order model of the cavity flow
in terms of the control input, Γ (t), and the modal coefficients, ai(t), obtained with
the POD method from M time-uncorrelated PIV snapshots.

Using a finite number N of modes to describe the flow, not only filters out smaller
flow structures, but also does not account for the energy transfer process between the
N retained modes and all the neglected modes. Therefore, an additional viscous term,
the modal eddy viscosity (Noack, Tadmor & Morzynski 2004), is added to maintain
the overall energy balance and to compensate for the truncated modes. The additional
viscosity is obtained by a modal energy balance (Noack et al. 2004) and added to the
viscous term in the Navier–Stokes equations.

3.3. Stochastic estimation

The design of a controller based on the reduced-order model (3.3) will be presented
and discussed in §5. For experimental implementation of the controller, the variables
of the model must be linked to flow variables that can be measured experimentally in
real-time. A similar need will arise in any practical application as well. In most systems,
real-time experimental measurements can be obtained only via surface pressure
or surface shear stress measurements. We use the stochastic estimation method
for correlating the model variables to surface pressure measurements. Stochastic
estimation (SE) was originally proposed and used by Adrian (1979) as a means of
extracting coherent structures from a turbulent flow field. The technique estimates
flow variables at any location by using statistical information about the flow at a
limited number, L, of locations. The method has been used to study flow structures
in various flows (e.g. Adrian & Moin 1988; Cole & Glauser 1998), and as a tool in
POD modelling to estimate the modal coefficients from experimental measurements
in subsonic jets (Picard & Delville 2000) and in cavity flows (Samimy et al. 2004;
Ukeiley & Murray 2005). It has also been used to estimate the modal coefficient of
POD models for feedback flow control (e.g. Glauser et al. 2004; Siegel et al. 2005;
Caraballo et al. 2005, 2006).

In the current work, quadratic stochastic estimation is employed to estimate the
modal coefficients of the flow model (3.3) directly from real-time measurements of
surface pressure fluctuations at a small number, L, of locations. The estimates of the
modal coefficients can be written in the following form

âi(t) = Cijp′
j (t) + Dijkp′

j (t)p
′
k(t) (i = 1, . . . , N, k, l, . . . = 1, . . . , L), (3.4)

where C and D are the matrices of the estimation coefficients found by minimizing
the average mean square error, ei , between the values of ai(tr ) obtained by projecting
the velocity fluctuations from the snapshots onto the POD basis

ai(tr ) =

∫
s

q ′(x, tr )ϕi(x) dx (r = 1, . . . , M), (3.5)

and the estimated ones âi(tr ) from (3.4) at the same times.
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Figure 3. Spectral characteristics of cavity for various Mach numbers measured with
transducer 8 located in the middle of the cavity floor.

To calculate the matrices in the SE (3.4), we use surface pressure measurements at
the L =6 locations in the cavity wall (sensors 1–6 in figure 2) taken simultaneously
with the PIV snapshots. A total of 1000 simultaneous PIV-surface pressure measure-
ments are acquired for each flow case. Whereas linear stochastic estimation has often
been used in the literature, Naguib, Wark & Juckenhoefel (2001) used both linear and
quadratic terms for an accurate estimate of the flow field from wall surface pressure
measurements. For the cavity flow, this was confirmed by Murray & Ukeiley (2002)
and by Caraballo et al. (2004). Similar observations were presented by Ausseur et al.
(2006) for the case of flow separation control. Both the linear and the quadratic terms
of (3.4) are retained in the current work as well. The stochastic estimation process
is repeated for each model based on the individual and combined sets of snapshots
discussed in this work.

The flow characteristics for the baseline and the open-loop forced cases along with
the characteristics for several reduced-order models are presented and discussed in
the next section. This is followed by the control design and implementation in § 5 and
presentation and discussion of the results in controlled flows in § 6.

4. Flow characteristics and reduced-order model results
4.1. Flow and surface pressure characteristics

The cavity depth in the experiment is adjustable, but only a depth of 12.7 mm (0.5 in)
corresponding to an aspect ratio, L/D, of 4 is used for all the results reported in this
work. In order to characterize the coupling between the acoustic and the flow fields,
we initially surveyed the flow between Mach numbers 0.2 and 0.7 with an increment of
0.01. For each of these cases, dynamic surface pressure measurements were obtained
using transducer 8 at the centre of the cavity floor (figure 2). Figure 3 summarizes
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Case Forcing frequency (Hz) Comments

B – Baseline flow
F1 1610 Open-loop forcing
F2 1830 Open-loop forcing
F3 3250 Open-loop forcing
F4 3920 Open-loop forcing
MB – Control model based on B snapshots
MBF1 – Control model based on B and F1 snapshots
MBF2 – Control model based on B and F2 snapshots
MBF3 – Control model based on B and F3 snapshots
MBF4 – Control model based on B and F4 snapshots

Table 1. Mach 0.3 flow baseline and open-loop forced flows and the models.

the results by showing the SPL amplitude and frequency as a function of the Mach
number. Also shown are the lines corresponding to the first four Rossiter modes
(R1–R4) predicted by the modified Rossiter formula (Heller & Bliss 1975), the first
longitudinal acoustic mode based on the cavity length (L1), and the first and second
transversal acoustic modes based on tunnel height (T1, T2). Strong resonant tones
are observed near the intersections of the predicted Rossiter modes with both the
transversal and the longitudinal acoustic modes. The observation of the interaction
between Rossiter and transversal acoustic modes is similar to that of Ziada et al.
(2003) who explored low subsonic cavity flows. The work of Rossiter (1964), Rockwell
& Naudascher (1978) and Williams et al. (2000) all examined cavity flows for which
the tunnel vertical dimension was significantly larger than the cavity length. In these
cases, only the interaction of Rossiter modes with the longitudinal cavity acoustic
mode was observed.

Based on these observations and other similar results (Debiasi & Samimy 2004),
we use Mach 0.3 flow as our reference baseline case because it shows a single tone
at about 2850 Hz, which is near the intersection of the third Rossiter mode and the
first transversal acoustic mode at 2700 Hz. At this Mach number, the actuator has
sufficient authority to significantly alter the flow and real-time feedback control can
be readily implemented. Table 1 gives the baseline and the four open-loop forced
flows as well as control models explored in the current work.

For the B (baseline) Mach 0.3 cavity flow case, figure 4(a) presents the SPL spec-
trogram, and figure 4(b) the corresponding spectrum of the surface pressure measured
by transducer 5, from figure 2. Measurements from the other transducers, not shown
here, provide consistent results, confirming that at this Mach number, the cavity
flow resonates at a frequency corresponding to the third Rossiter mode with strong
time-invariant flow-acoustic coupling. At other Mach numbers, the cavity oscillations
can exhibit rapid switching between multiple modes creating a distribution of energy
over a variety of frequencies.

Figure 5 shows the effect of open-loop forcing, cases F1–F4, in which the resonant
peak in the baseline case is significantly reduced and other modes have appeared.
Figure 5(a) shows the effect of actuation at 1610 Hz, for which the peak is reduced
by almost 20 dB with the introduction of a small peak at the forcing frequency.
The forcing peak was more pronounced at the locations of transducers 4 and 6,
indicating significant pressure variations within the cavity for this case. Figure 5(b)
illustrates the effect of forcing at 1830 Hz, the frequency corresponding to the second
Rossiter mode for this flow (figure 3). This forcing disrupts the natural resonance
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Figure 4. (a) SPL spectrogram and (b) spectrum of baseline Mach 0.3 cavity flow (case B)
from transducer 5.

and artificially induces a resonance congruous with the second Rossiter mode. The
corresponding spectrogram shows that the peak induced by forcing is time-invariant,
which is typical for single-mode resonance. Consistent results were obtained from the
other transducers in the test-section wall.

Figure 5(c) illustrates the effect of forcing at 3250 Hz, one of the optimal forcing
frequencies discussed by Debiasi & Samimy (2004). This case artificially induces a
multi-mode state in the flow with rapid switching between the resonant and control
frequencies and a consequent spreading of the pressure fluctuations. Similar results
were obtained from the other transducers in the test-section wall. It should be noted
that, because of the subtle geometry change introduced by the laser exhaust slot in
the cavity floor, the effect of the forcing presented here differs slightly form that
reported in Debiasi & Samimy (2004). Figure 5(d) shows the effect of forcing at
3920 Hz (near the fourth Rossiter mode, figure 3), another optimal sinusoidal forcing
which significantly reduces the resonant peak. The forcing induces a peak at its
subharmonic (close to the second Rossiter mode) that competes with the baseline
resonant frequency on a rapid time scale, thus inducing a multi-mode state. Consistent
results were obtained from the other transducers in the test-section wall.

Figure 6 presents the instantaneous and phase-averaged (over 50 images) planar
flow-visualization images and of the B, F2 and F4 cases. Three coherent large-scale
structures are clearly visible in the B case (figure 6a, b) consistent with the cavity flow
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Figure 5. SPL spectra from transducer 5 for Mach 0.3 cavity flow. The thin line is the B
case and the thick line is with open-loop forcing at cases: (a) F1; (b) F2; (c) F3; (d) F4.

(a) (b)

(c) (d)

(e) ( f )

Figure 6. Instantaneous (a, c, e) and phase-averaged (b, d, f ) planar flow-visualization images
of the cavity flow for: (a, b) B; (c, d) F2; (e, f ) F4. Flow is from left to right and the leading
and trailing edges of the cavity are shown in the flow-visualization images.
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Figure 7. Velocity spectra from hot-wire measurements of Mach 0.3 cavity flow at three
streamwise locations (x/D = 1, 2, 3; from left to right). The thin line is the B case and the
thick line is for open-loop forcing cases: (a–c) F2 and (d–f ) F4.

resonance at the third Rossiter mode for this baseline flow. Images in figure 6(c, d)
are for the F2 case (excitation at the second Rossiter mode frequency) for which,
as expected, two large coherent structures are clearly visible in the shear layer. This
visually confirms that forcing at this frequency eliminates or drastically weakens the
natural feedback mechanism for the third Rossiter mode, but excites the flow at the
lower resonant frequency (figure 5b). Images in figure 6(e, f ) present the F4 case.
Four large-scale structures are visible in the instantaneous image of the flow for
this forcing near the fourth Rossiter mode whereas the average data exhibit discrete
structures in the upstream half of the cavity, but less-defined large-scale dynamics
along the downstream half. Phase-averaged fluctuating normal velocity components
obtained using PIV show results consistent with these images, confirming the existence
of three, two and four structures in B, F2 and F4 cases, respectively (Little, Debiasi
& Samimy 2006).

To obtain a more quantitative description of the frequency content of cavity shear-
layer structures, a hot-wire survey at three streamwise locations was performed. The
velocity spectra shown in figure 7 correspond to the cases of figure 6, where the
two open-loop forcing cases (F2 and F4) have been superimposed on the baseline
case (B) to allow easier comparison. The strong resonance of case B (thin line) is
exhibited by the peak at the third Rossiter mode that remains dominant over the
length of the cavity, consistent with the flow-visualization images in figure 6(a, b). As
x/D increases, higher broadband energy levels are also observed. This is due to an
increase in turbulence intensity and the extended scale of turbulence, as large-scale
structures advect in the shear layer of the cavity and entrain more fluid from both
sides of the shear layer. Similar behaviour is shown for case F2 (figure 7a–c), albeit
at a lower frequency. Consistent with the visualization of figure 6(c, d), the flow is
now resonating at the second Rossiter mode which remains dominant over the cavity
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Figure 8. Energy content of the first 30 POD modes (a) and cumulative energy of the modes
(b) for the v-component of velocity fluctuations of the baseline flow and the four open-loop
forced flows.

length surveyed. As with case B, increases in broadband levels are observed with
increases in x/D. An indication of strong flow-acoustic coupling is observed when
comparing the SPL spectra of figure 5 with the velocity spectra of figure 7. For
case B, flow and surface pressure both show resonance at the same frequency, the
third Rossiter mode, while for F2, the flow and surface pressure show resonance
primarily at the second Rossiter mode. One difference between the velocity spectra
of cases B and F2 and their respective flow–acoustic coupling mechanisms is the
existence of harmonics in the flow for the F2 case. No harmonics are observed in the
F2 SPL spectrum, implying that these frequencies do not contribute significantly to
flow–acoustic coupling.

The velocity spectra for F4 (figure 7d–f ) show examples of multi-mode resonance
where the flow energy is now shared between the forcing frequency (fourth Rossiter
mode) and its broadened subharmonic near the second Rossiter mode. In addition, as
x/D increases, the broadened subharmonic actually becomes slightly dominant over
the control frequency. It is believed that this behaviour is an indication of structure
pairing or merging events that occur over the latter half of the cavity, a possible
explanation for the less coherent behaviour observed in the downstream portion of
figure 6(e, f ). This suggests that one strategy for successful cavity flow control is to
excite oscillations at competitive or non-resonant frequencies, thereby not supplying
sufficient energy or permitting the necessary feedback to allow selective amplification
over the extent of the cavity length. However, we have seen that a sufficient increase
in the actuation amplitude (not shown) allows both the velocity and surface pressure
spectra to become dominantly resonant at the fourth Rossiter mode, similar to the F2
case. Accordingly, we have to balance both frequency and to a lesser degree excitation
amplitude when applying open-loop control (Debiasi & Samimy 2004). As expected,
the SPL spectrum of this flow (figure 5d) also exhibits multi-mode behaviour where
the energy is distributed between various modes with the second Rossiter mode
containing the most energy. As in the velocity spectra for B and F2, increases in
broadband energy levels are observed corresponding to increases in x/D. Velocity
spectra for remaining open-loop forcing cases, F1 and F3 (not shown) display similar
behaviour to those in figure 7 where F1 behaves like F2 (dominant peak at the forcing
frequency) and F3 behaves similarly to F4 (multi-mode fluidic resonance).

The results presented above clearly confirm the authority of the actuator at this
Mach number and the ability of the experimental set-up to alter the flow significantly
in a controlled fashion.
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Figure 9. The first four POD modes for the v-component of velocity fluctuations of the
baseline flow and the four open-loop forced flows.

4.2. Reduced-order modelling results

Figure 8 shows the energy distribution of the first 30 POD modes for the baseline and
each of the open-loop forced cases. It can be seen that more energy is recovered by
modes 1–3 in the F1and F2 cases, i.e. in flows with larger, more organized shear-layer
structures. In terms of cumulative modal energy (figure 8b), the larger energy recovery
of these modes is not compensated by the lower recovery of the successive modes 4–
6. This is particularly visible for F2. Conversely, cases F3 and F4, characterized by
smaller and less organized structures, exhibit a smaller lower mode energy recovery.
The energy recovery of all the successive modes appears to be similar for all the cases.

Figure 9 shows the first four POD modes of the v-component of velocity fluctuations
for the baseline flow (B) and each of the four open-loop forced flows (F1–F4). For
the B case, all four modes show three structures in the flow, consistent with the cavity
resonance at the third Rossiter mode (figures 3 and 6a–c). These four modes contain
about 40 % of the energy in the v-component. The POD modes shown for B and F2
in figure 9 show a structure pattern similar to the phase-averaged v-component of
velocity fluctuations from PIV data (Little et al. 2006). In order to keep the reduced-
order model tractable and also amenable to controller design and implementation,
only these four modes are used in the design of the controller.

In F1 and F2, the flow is forced at frequencies close to or coincident with the second
Rossiter mode. Accordingly, two structures are present in the modes congruent with
figures 3 and 6(d–f ). For both cases, the first four modes contain about 45 % of the
energy. When forced at 3250 Hz (F3) the flow has modal behaviour similar to case B,
with the presence of three structures. However, the structures have smaller size. The
subharmonic of the forcing frequency in case F4 is close to the second Rossiter mode
and dominates the SPL spectrum (figure 5d). The first three POD modes for this case
show the presence of two clearly defined structures, whereas the fourth mode exhibits
a more smeared pattern, congruent with the PIV data close to the cavity trailing
edge. Thus, in contrast with flow visualization and PIV images (figure 6e, f ), POD
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Figure 10. The first four POD modes for the v-component of velocity fluctuations for the
combination of the baseline and the four open-loop forced flows.

modes seem biased toward capturing the flow subharmonic oscillations rather than
the corresponding fundamentals. The energy contained in these four modes is about
37 %, lower than that of the baseline case.

Figure 10 shows the first four POD modes for the cases MBF1–MBF4, where the
baseline is combined with one of the open-loop forced cases. The POD modes from
the combined PIV snapshots take, as expected, some characteristics from each of the
participating flows. For example, for the case MBF4 based on the combination of
the B and F4 cases, the first and second modes contain two dominant structures as
in F4, whereas the third and fourth modes contain three structures which resemble
those of the B case. The combined data sets for the snapshots are limited to two
flow conditions only (baseline and one forced case) for consistency with the very low
order (N = 4) chosen for the POD expansion. The incorporation of snapshots from
multiple flow conditions beyond the two considered here would require a higher-order
dynamical system (3.3) to capture the various characteristics of the flow exhibited by
different flow conditions. Although it is possible in principle to increase the order
of the POD expansion, this comes at the expense of a more complicated state space
model for control design, which would also require a larger number of independent
pressure measurements for state estimation.

The reduced-order model, (3.3), obtained by Galerkin projection of the Navier–
Stokes equations onto the POD modes, is solved to check the time evolution of the
modal coefficients which, with N = 4, converge for the all five models in table 1.
Figure 11 shows the evolution of the first modal coefficient of the MB and the MBF4
cases. As expected, after an initial transient period, the modal coefficients oscillate in a
bounded fashion around zero. The thick lines in these figures represent the limits of 2
standard deviations of the corresponding modal coefficients obtained using (3.5) from
the PIV snapshots. This allows a qualitative validation of (3.3) which indicates that its
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Figure 11. The first POD modal coefficient in the Galerkin system from (3.3) for two different
models: (a) MB; (b) MBF4. The thick horizontal lines correspond to two standard deviations
of modal coefficients obtained from PIV snapshots and (3.5).

solutions fall within or close to the range obtained from the PIV measurements. The
system trajectories converge to the same values irrespective of the modal coefficient
used as the initial condition for the solution of the reduced-order model (3.3). This
implies the existence of a stable limit cycle. Similar results are obtained for the modal
coefficients of the other three cases. We have also shown previously that the modal
coefficients obtained with (3.4) compare well with those obtained from PIV snapshots
using (3.5) (Caraballo et al. 2005, 2006).

5. Controller design and implementation
In this section, we present and discuss the methodology for the design of the

reduced-order model based controller. The procedure includes equilibrium computa-
tion, coordinate transformation, linear approximation of the Galerkin system, and
linear-quadratic state-feedback control design. In this work, we have considered the
five reduced-order flow models MB and MBF1–MBF4, obtained as described in the
previous sections and summarized in table 1. The expression for the reduced-order
flow model for all five cases is the same nonlinear state space model given by (3.3),
with N = 4, whereas the numerical values of the model parameters vary for each case.

5.1. Equilibrium analysis and model simplification

The first step in the design of a feedback control law is to shift the origin of the
coordinate system of the reduced-order model (3.3) to the equilibrium point, a0. To
accomplish this goal, a Newton iterative algorithm has been implemented to compute
the equilibrium point for the unforced system (3.2) (Yuan et al. 2005). Shifting the
origin of (3.3) to the equilibrium point, removes the constant terms in the equations.
The resulting simplified state space model in the new set of coordinates ã = a − a0

describing the behaviour of the system around the equilibrium point becomes

˙̃a = G̃ã +

⎡
⎢⎣

ãT H 1 ã
...

ãT H 4 ã

⎤
⎥⎦ + B̃Γ +

⎡
⎢⎣

(B̄
1
Γ )T ã
...

(B̄
4
Γ )T ã

⎤
⎥⎦ , (5.1)
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Model Open loop eigenvalues

MB λ1,2 = 1597 ± 7023i λ3 = −3652, λ4 = −880
MBF1 λ1,2 = 270 ± 6491i λ3 = −1847, λ4 = −623
MBF2 λ1,2 = 433 ± 12458i λ3,4 = −397 ± 1779i
MBF3 λ1,2 = −1492.6 ± 7532i λ3 = −2742, λ4 = −674
MBF4 λ1,2 = 1397 ± 7062i λ3 = −2871, λ4 = −697

Table 2. Eigenvalues of the open-loop system for each model.

where

G̃ = G +

⎡
⎢⎣

aT
0 (H1 + (H1)T )

...
aT

0 (H4 + (H4)T )

⎤
⎥⎦ , B̃ = B +

⎡
⎢⎣

(B̄
1
)T a0

...

(B̄
4
)T a0

⎤
⎥⎦ .

Clearly, the adapted model has an equilibrium point at the origin, which is more
convenient for controller design and stability analysis.

5.2. Linear quadratic state feedback control

To apply linear control design, a linear approximation of (5.1) at the origin is readily
obtained as

˙̃a = G̃ã + B̃Γ. (5.2)

The eigenvalues of the system matrix G̃ computed for each of the five models are
given in table 2.

It can be seen from table 2 that the models exhibit the same qualitative features
in the linear approximation, as the open-loop matrices possess two unstable complex
conjugate eigenvalues and two stable eigenvalues. The presence of two unstable
complex conjugate eigenvalues implies, as expected, that the flow corresponding to
the equilibrium, a0, is an unstable solution for the GM (3.2). Since the pairs, (G̃, B̃),
for all five cases are controllable, linear state-feedback design based on the linearized
model (5.2) offers a simple approach to the design of a controller for the nonlinear
model (5.1). Recall that the stochastic estimation method provides a way to estimate
the modal coefficients of the GM from real-time surface pressure measurements with
(3.4). The availability of real-time estimates of the state of the GM (5.1) allows the
use of linear state-feedback control to globally stabilize the origin of (5.2). This, in
turn, yields a controller that locally stabilizes the origin of the nonlinear system (5.1).

A convenient and well-established methodology for the state-feedback controller
design is offered by linear-quadratic (LQ) optimal control. The LQ design computes
the gain matrix, K, such that the state-feedback law

Γ (t) = −Kã(t), (5.3)

minimizes the quadratic cost function

Jc(ã, Γ ) =

∫ ∞

0

(ãT Wã ã + WΓ Γ 2) dt, (5.4)

where Wã > 0 and WΓ > 0 are positive definite weighting functions for the state
vector and the control signal, respectively. Minimization of Jc results in asymptotic
stabilization of the origin, while keeping the control energy small. In our design,
the weights have been chosen as Wã = I4×4 and WΓ = 1 for all the models. For the
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Model Controller gain K α

MB [−56 8.8 −417 −12.8] 0.265
MBF1 [2.6 −19.9 −27.0 −16.1] 1
MBF2 [1.7 69.5 36.3 −33] 0.62
MBF3 [51.9 50.8 −320 −261] 0.25
MBF4 [17.6 209 11.6 −147] 0.5

Table 3. Controller gains.
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Figure 12. Eigenvalues of (a) the open-loop system and (b) the closed-loop system for
each model.
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Figure 13. Diagram of the closed-loop system with LQ state-feedback control.

particular system under consideration, it has been observed that increasing the control
weight, WΓ , with respect to Wã has little effect on the location of the closed-loop
eigenvalues. As a result, the simplest possible choice of the weighting functions that
ensures closed-loop stability has been adopted. The corresponding control gains for
each model are given in table 3.

It is well known that applying LQ state-feedback control (5.3) to the linearized
system (5.2) results in mirroring all the right-hand half-plane eigenvalues of the
matrix G̃ to the left-hand half-plane, while the left-hand half-plane eigenvalues remain
practically unchanged (figure 12). Results of nonlinear simulations of the closed-loop
system (5.1)–(5.3) show that the trajectory of a(t) converges to the corresponding
equilibrium point, a0, in each of the considered cases. This indicates that, at least in
principle, the LQ controller designed for the linear approximation (5.2) succeeds in
stabilizing the equilibrium of the four-dimensional nonlinear GM (5.1).
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Figure 14. Simulation results of the closed-loop system with different scaling factor, α, for
MBF3 flow model: (a) root locus and (b) closed-loop responses at the location of trans-
ducer 3.

6. Real-time feedback control results and discussion
Before presenting the results of the experimental implementation of the controller,

it is worth summarizing the structure of the reduced-order model-based controller
derived in § 5. As depicted in figure 13, the controller includes a stochastic estimation
subsystem and a feedback from the estimated states. The estimate, ˆ̃a, of the deviation
from the equilibrium of the modal coefficients of the GM, required to implement the
feedback law (5.3), may, in principle, be obtained by means of stochastic estimation by
first estimating â(t) from raw pressure measurements using (3.4), and then subtracting
the equilibrium value, a0, computed from the model data. However, in implementing
the controller, subtracting the equilibrium values from the estimated modal coefficients
is not necessary, since the DC component is removed from the pressure measurements
by means of high-pass filtering. That is, the estimator (3.4) naturally produces the
values of the zero-mean fluctuations, ˆ̃a, from pressure measurements. It is also
important to point out that, to prevent any damage to the actuator, the control
input signal must be limited to the range ±10 V. Since the gains of the LQ control
(table 3) are quite large, constant saturations of the actuator were observed during
initial closed-loop experiments for most of the cases under investigation. Therefore,
it was necessary to introduce a scaling factor, 0 <α � 1, in the state-feedback to keep
the actuator below the saturation limit. The resulting scaled control is in the form

Γα(t) = −αK ˆ̃a(t). (6.1)

The scaling factors for each model are given in table 3. The specific value of α for
each controller has been chosen empirically as the highest such value that keeps the
magnitude of the scaled control signal (6.1) within the given bound. The performance
of the closed-loop systems obtained with the scaled LQ control (6.1) replacing (5.3)
has been evaluated using simulation. Typical results obtained for MBF3 are shown in
figure 14. Figure 14(a) shows that the closed-loop eigenvalues are moved to the left
half-plane only when α > 0.5. However, figure 14(b) shows that, though the scaled LQ
control is not capable of asymptotically stabilizing the origin of the nonlinear model
(3.2), as shown for the scaling factor of α = 0.25, it nevertheless provides a significant
reduction of the amplitude of the stable limit cycle. These results are in agreement
with a mathematical analysis carried out on the nonlinear finite-dimensional GM,
which predicts a reduction of the amplitude of the limit cycle corresponding to
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Figure 15. SPL spectra from transducer 5 and 6. The thin line is the B case and the thick
line is control with LQ design based on the MB model: (a) sensor 5 and (b) sensor 6.

the fundamental cavity tone as the gain, α, increases from 0 to 0.5, with complete
suppression of the oscillation only possible for α > 0.5. The results for the other
models show similar trends. It must be kept in mind that stabilization of the origin
of (5.1) corresponds to dissipation of the oscillations produced by the limit cycle,
only as predicted by the simple model (5.1), which can capture the rich behaviour
of the flow only in a limited qualitative sense. Therefore, when applying (6.1) to
the experimental set-up, it must be expected that the pressure fluctuations are not
completely suppressed, even when stabilization of (5.1) is achieved by the controller.

The performance of the control law (6.1) has been tested experimentally for different
combinations of reduced-order models and flow conditions. In the following, we
present and discuss the results obtained in controlling the baseline flow B. Since the
goal of our controller is to reduce the amplitude of pressure oscillations, we use the
SPL spectra as the primary measure of controller effectiveness. In general, spectra
from each of the transducers of figure 2 are checked; however, we choose only to show
the signal from transducer 5. If the results from the other transducers are significantly
different, they are noted in the text. As an example of the relationship between
sensors, we present surface pressure spectra from transducers 5 and 6 in figure 15
for the MB case. As expected, there are some differences in the data from the two
sensors; however, the general trend of multi-mode resonance with no dominant peaks
is conclusive. The MB-based LQ controller produces a considerable attenuation of
the resonance peak and a redistribution of the energy into various modes.

The use of combined reduced-order models for cavity flow control is a relatively
new topic and requires more work. Nevertheless, we present some preliminary results
of these combinations that provide some insight into their control effect. When
a model incorporating the baseline and one open-loop forcing case (figure 16) is
considered in place of the MB model, the attenuation of the resonance tone is
generally accompanied by the introduction of a new significant peak whose frequency
is about 2000 Hz for MBF1 and MBF2 (figure 16a, b) and about 3200 Hz for MBF3
(figure 16c). The MBF4 case (figure 16d) is the most successful of the combined
models as only a small peak, around 3200 Hz, is observed in the spectrum which
exhibits multi-mode/peak splitting phenomena. In addition, we can compare the
result obtained with the MB-based (figure 15a) and MBF4-based (figure 16d) LQ
control to that obtained with the best open-loop forcing, F3 (figure 5c). In all
cases, multi-mode behaviour has been induced in the cavity flow with attendant
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Figure 16. SPL spectra from transducer 5. The thin line is the B case and the thick line is
control with LQ design based on the model: (a) MBF1; (b) MBF2; (c) MBF3; (d) MBF4.

spreading of the available pressure fluctuations at different frequencies. The MB and
MBF4 closed-loop control cases perform better than the open-loop control since they
produce slightly lower maximum peaks. The SPL spectra of these LQ controlled
flows resemble that previously obtained using a parallel-proportional with time delay
feedback control (Yan et al. 2006).

Overall, MBF4 produces a marginally improved spectral attenuation compared
to that of the MB case. This and the modest performance of the MBF1-3 cases
is somewhat surprising, as we would expect the incorporation of open-loop forced
flow features to create a richer model capable of delivering better results in closed-
loop conditions. The reasons for the lack of significant improvement with respect to
the MB model are not clear, but we speculate that they include: (i) the particular
technique for control separation that has been employed to render the presence of
the control input explicit in the model (Appendix); and (ii) modulation of the control
signal introduced by the actuator transfer function. A better resolution of the effect of
external forcing may be obtained by resorting to a method of control separation that
makes use of ‘actuation modes’ directly at the level of POD modelling. In addition, the
use of a compensator to minimize the frequency modulation of the actuator transfer
function could offer significant improvements in controller performance. Both issues
are currently being addressed (Caraballo et al. 2007; Kim et al. 2007).

Having presented the SPL spectra for various reduced-order model based
controllers, we now examine in more detail one of the successful cases, MB. Similar
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Figure 17. SPL spectra from transducer 5. The thin line is the B case and the thick line
is control with LQ design based on MB model: (a) M = 0.28; (b) M = 0.29; (c) M = 0.31;
(d) M = 0.32.

to the parallel-proportional control mentioned earlier, the benefits of this scaled LQ
controller are retained applying it to slightly off-design conditions around Mach 0.3
(figure 17). In these flows, the feedback controller clearly exhibits a good robustness,
whereas F3, which was effective at Mach 0.3, produces a strong forcing peak under
the same robustness test. Similar results have also been shown for other open-loop
forcing cases (Yan et al. 2006). The spectra from the other transducers in the cavity
wall are consistent with this observation.

The similarities between the MB control and the parallel-proportional with time-
delay control suggest that, although through different processes, similar physical
mechanisms are activated at the receptivity region of the cavity shear layer by both
these real-time feedback controls. To gain an appreciation of the effects of feedback
control on the cavity flow structure, case MB was examined using PIV. As in the
open-loop cases (Little et al. 2006), the MB controlled flow shows relatively small
mean flow variation compared to the resonant baseline case. Figure 18 demonstrates
this point using an ensemble average of 1000 velocity profiles at various streamwise
locations. The results show that the shear-layer thickness in the two cases is almost the
same whereas only small variations in the recirculation region are evident along the
downstream half of the cavity. It is surmised that this small variation in recirculation
is due to the more steady flow impingement on the cavity trailing edge in the
well-controlled flow rather than the periodic impingement seen in the baseline case.
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Figure 19. Velocity spectra from hot-wire measurements of Mach 0.3 cavity flow at streamwise
locations (a) x/D =1; (b) 2, (c) 3. The thin line is the B case and the thick line is case MB.

In the open-loop data presented earlier, a reference signal from the resonating flow
or actuator was used to conditionally sample the flow-visualization image or velocity
field to obtain phase-averaged data. For a case in which no resonant signal is available
(i.e. a well-controlled flow), conditional sampling is not possible experimentally. To
circumvent this difficulty and to gain an understanding of the evolution of the cavity
shear-layer vortices, we again use a hot-wire survey of the cavity shear layer. The
results are presented in figure 19 for three locations along the cavity length, which
are striking in comparison to hot-wire data from the baseline flow resonating at
the third Rossiter mode. In the upstream region, various frequency components are
observed along with much higher broadband velocity fluctuations in comparison to
the baseline case. As x/D increases, the frequency content begins to smooth with little
to no peaks in the spectrum in the downstream portion of the cavity. This behaviour
is also reflected by the SPL spectrum in figure 15 of the controlled flow. Along with
the open-loop results presented earlier, these measurements give an indication of one
effect of successful control on cavity shear-layer structures. As can be seen from the
upstream velocity spectrum (figure 19a), there are some frequencies associated with



340 M. Samimy and others

the large-scale structures in the shear layer; however, owing to the effects of control,
these events do not receive sufficient energy from the natural feedback to permit
their amplification over the cavity length. Along the downstream half (figure 19c), no
evident frequency content is visible, implying that, on average, shear-layer vortices
break apart before impinging on the downstream corner. This effectively eliminates
the possibility of strong acoustic waves at discrete frequencies travelling upstream and
thus controls the flow resonance. Other detailed statistical flow properties obtained
using PIV and hot wire exhibit some similarities and some differences for the various
control cases, which will be further analysed and presented in future publications.

6.1. Concluding remarks

Comprehensive feedback flow-control work is presented and discussed, which includes
(i) acquiring detailed experimental data, (ii) using the experimental data to obtain
POD modes to represent the most energetic features in the flow, (iii) projecting
tailored Navier–Stokes equations onto the POD modes using the Galerkin projection
to obtain reduced-order models of the flow, (iv) using stochastic estimation to correlate
the model parameters to surface pressure measurements for real-time model update,
(v) designing controllers based on the reduced-order models derived, and as a last
step (vi) implementing the controllers to evaluate their performance experimentally.
The flow investigated is a subsonic cavity flow. The cavity is shallow with an aspect
ratio, L/D, of 4 and spans the width of the wind-tunnel test section. The facility can
be operated continuously between Mach 0.2 and 0.7, but the majority of the work
is carried out around Mach 0.3 with a Reynolds number based on a cavity depth of
approximately 105. The output of a compression driver actuator is channelled to the
cavity leading edge where it exits at an angle of 30◦ with respect to the main flow
through a thin two-dimensional slot spanning the cavity width. This arrangement
provides zero net mass, non-zero net momentum flow for actuation, similar to that
of a synthetic jet. Actuation can be achieved in the frequency range of 1–5 kHz
with a momentum coefficient in the range of 10−4 to 10−6. The baseline cavity flow
at Mach 0.3 has a strong single-mode resonance at a frequency of about 2900 Hz
corresponding to the third Rossiter mode. Using open-loop sinusoidal forcing, the
cavity can be forced to operate at another Rossiter mode or to switch to multi-
mode resonance characterized by rapid switching between the modes. These results
suggest that one strategy for successful cavity flow control is to excite oscillations at
competitive or non-resonant frequencies thereby not supplying sufficient energy or
permitting the necessary feedback to allow selective amplification over the extent of
the cavity length.

Various laser-based flow diagnostics are used to understand cavity flow physics
and to obtain detailed data for the derivation of reduced-order models used in
controller design. Particle image velocimetry (PIV) data and the snapshot-based
proper orthogonal decomposition (POD) technique are used to extract the most
energetic flow features or POD eigenmodes. For each flow case, 1000 PIV snapshots
are used to ensure convergence of turbulent kinetic energy. Galerkin projection of the
Navier–Stokes equations onto the POD modes is used to derive a set of nonlinear
ordinary differential equations that model the time evolution of the modes. Different
sets of PIV snapshots of the flow are used to derive reduced-order models for
the controller design, including snapshots from the baseline (no actuation) and, the
same flow under open-loop forcing at various frequencies. The forced flows include
both single-mode and multi-mode regimes. Quadratic stochastic estimation is used
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to correlate the model coefficients to dynamic surface pressure measurements, thus
enabling a real-time estimate of the state of the models.

Linear-quadratic optimal controllers based on each of these models are designed
to control the cavity flow resonance, and are evaluated experimentally. The results
obtained with feedback control for some models show a significant attenuation of
the resonant tone and a redistribution of the energy into lower-frequency modes with
smaller energy levels in both the flow and surface pressure spectra, thereby constituting
a significant improvement in comparison with the results obtained with conventional
open-loop forcing. Velocity spectra within the shear layer of a feedback-controlled
cavity show that some frequencies associated with the large-scale structures exist in
the upstream portion of the cavity; however, no resonant frequency content is visible
in the downstream half of the cavity. This suggests that, owing to control, large-scale
structures do not receive sufficient energy from natural feedback to permit their
selective amplification over the cavity length. As with open-loop control, ensemble-
averaged streamwise velocity profiles of closed-loop control show small deviations
from the baseline, implying that control techniques of this variety affect primarily
fluctuating flow properties.

The results presented suggest that feedback control strategies based on reduced-
order models represent a compelling approach to subsonic cavity flow control.
Notwithstanding the encouraging results reported and discussed in this work, further
investigation is required to understand how to incorporate more effectively the
presence of actuation in reduced-order POD models. This improvement will allow
a more realistic prediction of forced flows while clarifying the interplay between
feedforward and feedback control strategies.

This work is supported by the AFRL/VA and AFOSR through the Collaborative
Center of Control Science (Contract F33615-01-2-3154). The authors would like
to thank Hitay Özbay, James DeBonis, Chris Camphouse, David Williams, Lou
Cattefesta, Bernd Noack, Clancy Rowley, Dietmar Rempfer and Gilead Tadmor for
help and fruitful discussions.

Appendix
We describe the procedure used in the derivation of the reduced-order model. The

procedure is applied to PIV data (1000 PIV snapshots) taken simultaneously with
surface pressure measurements for each flow condition.

POD method

In applying the POD snapshot method to compressible flow it is advantageous to
group the independent flow variables and then define an appropriate inner product
operator (Freund & Colonius 2002; Rowley 2002). For the case of two-dimensional
flow, we define a vector as q(x, t) = [u(x, t)v(x, t)c(x, t)] where u, v and c are the
local values of the velocity components and of the speed of sound. Following Rowley,
Colonius & Morray (2004), the inner product operator is defined in such a way that
the final result is dimensionally consistent as

〈q1, q2〉α|S =

∫
S

(
u1u2 + v1v2 +

2α

γ − 1
c1c2

)
dx (A 1)

where in our study α =1 and γ is the ratio of specific heats. The integration is
performed over the flow domain S.
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The POD snapshot approach uses M snapshots of the flow and casts the fluctuations
of the flow realizations, q ′(x, t) = [u′v′c′], in terms of N < M spatial orthonormal
modes or POD modes, ϕi(x), each modulated in time by a modal amplitude ai(t)

q ′(x, t) ∼=
N∑

i=1

ai(t)ϕi(x). (A 2)

Each POD mode is computed as a linear combination of the instantaneous flow fields

ϕi(x) =

M∑
k=1

Aik(t)q ′(x, tk) (A 3)

with the matrix A obtained by solving the eigenvalue problem

C(t, tk)A = λA (A 4)

where C(t, tk) is the two-point correlation tensor of independent snapshots integrated
over the spatial domain of interest, defined as

C(t, tk) =
1

M
〈q(x, t), q(x, tk)〉|S. (A 5)

The ith modal amplitude of a known flow field, q ′(x, t), can be obtained from

ai(t) =

∫
s

q ′(x, t)ϕi(x) dx. (A 6)

Galerkin projection and low-dimensional model

The Galerkin projection method is used to obtain a reduced-order model of flow
dynamics, which consists of a system of ordinary nonlinear differential equations for
the modal amplitude a(t) = [a1(t) a2(t) . . . aN (t)]. The method relies on the projection
of the governing equations of the flow, the compressible Navier–Stokes equations, onto
the orthogonal basis of POD modes. In our study we adopted the two-dimensional
form of the Navier–Stokes equations based on the work of Rowley (2002)

Dc

Dt
+

γ − 1

2
c∇ · u = 0,

Du

Dt
+

2

γ − 1
c∇c =

µ

ρ
∇2u,

⎫⎪⎪⎬
⎪⎪⎭

(A 7)

where u =(u, v).
The Galerkin projection procedure involves the following general steps. The flow

variables are first expressed in terms of their mean component and of the POD
expansion of their fluctuating components from (A 2)

q(x, t) = qm(x) +

N∑
i=1

ai(t)ϕi(x) (A 8)

where qm denotes the mean flow. Replacing the terms from (A 8) in the governing
equations (A 7) leads to an expression of the form

N∑
i=1

ȧi(t)ϕi(x) = f

{
q(x, t),

∂

∂x
q(x, t), . . .

}
≡ f (x, t), (A 9)



Feedback control of subsonic cavity flows 343

where the left-hand side stems from the time derivatives in (A 7) and the right-hand
side groups all the other terms of (A 7). In the Galerkin projection, the inner products
according to (A 1) of both sides of (A 9) are taken with the POD modes. Because
of the orthonormality of the modes, the only terms surviving on the left-hand side
correspond to the modes projecting onto themselves

ȧi(t) = 〈ϕi(x), f (x, t)〉|S (i = 1, 2, . . . , N). (A 10)

We modified the above process in order to obtain a set of equation where the
control effect appears explicitly. The procedure, presented in more detail in Efe &
Özbay (2003) and Samimy et al. (2003), separates the control input of the system by
dividing the entire flow domain into two distinct sub-domains. One smaller region, S2,
comprises the physical region where the synthetic jet excitation is dominant whereas
a second larger region, S1, contains the rest of the flow field. The total flow domain
can then be expressed as S := S1 ∪ S2.

It is important to notice that 〈ϕi(x), f (x, t)〉|S = 〈ϕi(x), f (x, t)〉|S1
+ 〈ϕi(x),

f (x, t)〉|S2
holds true by the definition of the inner product. Therefore, (A 10) can be

more explicitly written as

ȧi(t) = 〈ϕi(x), f (x, t)〉|S1
+ 〈ϕi(x), f (x, t)〉|S2

(i = 1, 2, . . . , N). (A 11)

Since the boundary excitation Γ (t) accounts for the flow characteristics in the S2

subdomain, we can write

qm(x)|S2
+

N∑
i=1

ai(t) ϕi(x)|S2
= Γ (t) (A 12)

and in (A 11), the terms corresponding to the left-hand side of (A 12) can be replaced
with the excitation Γ (t). With this modification and depending on the form of the
vector function f , the procedure described will yield a non-autonomous set of ODEs
capturing the dynamics in the following form

ȧi(t) = F i +

N∑
j=1

Gijaj (t) +

N∑
j=1

N∑
k=1

Hijkaj (t)ak(t)+BiΓ (t)+

N∑
j=1

B̄ijΓ (t)aj (t). (A 13)

The Galerkin model in the form of (A 13) can be also compactly expressed in the
vector notation

ȧ = A(a) + B(a)Γ (A 14)

where,

A(a) = F + Ga + aT Ha, (A 15)

B(a) = B + B̄a. (A 16)

Equation (A 14) represents the reduced-order model sought for the design of a
feedback controller.

Stochastic estimation

For the quadratic SE, the expression used to estimate âi(tr ) at any time t is

âi(t) = Cijp′
j (t) + Dijkp′

j (t)p
′
k(t) (i = 1, . . . , N, j, k = 1, . . . , L), (A 17)

where C and D are the matrices of the estimation coefficients obtained by minimizing
the average mean square error ei between the values of ai (tr ) obtained with (A 6) at
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the times tr of the PIV snapshot, and those âi(tr ) estimated from the pressure data
recorded simultaneously with the snapshots. That is,

ei = 〈[âi(tr ) − ai(tr )]
2〉 (r = 1, . . . , M), (A 18)

where the operator 〈 〉 (not to be confused with the inner product previously defined)
represents the time average of its arguments. Once the estimation matrices C and D
are obtained, they can be replaced in (A 17) to estimate the modal amplitude from
the surface pressure measurements.
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